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Abstract

Aquatic ecosystems throughout the world are threatened by the presence of invasive aquatic

plants, both floating and submerged. Some of the aquatic species, such as water hyacinth

(Eichhornia crassipes [Mart.] Solms), alligator weed, Alternanthera philoxeroides (Mart.), giant salvinia,

Salvinia molesta D.S. Mitchell and water lettuce (Pistia stratiotes L.), Griseb. despite being relatively

minor problems in their native range, have become major invaders of aquatic habitats in other

parts of the world after having escaped from their natural enemies. Unchecked growth of aquatic

vegetation is generally undesirable and reduces the value of the water resource. Despite adopting

all control options including manual, mechanical, chemical and classical biological, the problem

persists. The current weed management is oriented towards finding approaches that are effective

in controlling the weed and reducing environmental contamination from herbicides. Plant

pathogens have been gaining increasing attention and interest among those concerned with

developing environmentally friendly, effective and compatible approaches for integrated manage-

ment of the noxious weeds. This paper discusses some of the major microbial agents associated

with aquatic weeds and their increasing role in integrated weed management.
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Introduction

Aquatic plants grow and complete their life cycle in water.

Some of them, after coming out of their native range,

grow aggressively, causing significant ecological impacts

on the environment, and associated cascading socio-

economic effects causing harm to aquatic environment,

directly or indirectly, and attain the status of a weed [1].

These invasive plants are largely anthropogenically spread,

and their presence is typically an indication of the

enrichment of waters through pollution, as a result of

increasing urbanization, industries and agriculture [2].

Most of the world’s worst tropical aquatic weeds are

native to the neotropics, a vast biogeographic area com-

prising of South and Central America, the Caribbean and

parts of Southern Mexico. Some of the species, such as

water hyacinth, Eichhornia crassipes (Mart.) Solms, alligator

weed, Alternanthera philoxeroides (Mart.) Griseb., giant

salvinia, Salvinia molesta D.S. Mitchell and water lettuce,

Pistia stratiotes L., despite being a relatively minor problem

in their native range, have become major invaders of

aquatic habitat in other regions of the world after having

escaped from their natural enemies [3].

The presence of unwarranted aquatic vegetation

influences the management of water in reservoirs, man-

made canals, river systems and natural waterways, which

amount to millions of kilometres/square kilometres of

such water bodies around the world [4, 5]. Dense

impenetrable infestations restrict access to water, often

reduce the usefulness of aquatic bodies for pisciculture [6]

and related commercial activities, the use of irrigation

canals, navigation and transport, hydroelectric pro-

grammes and tourism [7–9]. They greatly increase water

loss through evapotranspiration when they completely

cover the surface of a water body [10] and decrease light

penetration, which affects the diversity and population of

native aquatic flora and fauna in these habitats [11–12].

Aquatic weeds can assimilate large quantities of nutrients
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from the water reducing their availability and quality.

Thus they pose a grave threat to native flora and fauna

and seriously deplete water bodies of oxygen [13, 14].

Poverty-stricken rural populations whose livelihoods

depend on access to clean freshwater waterways are the

most negatively impacted. Dense growth of aquatic weeds

may provide ideal habitat for the development of mos-

quito causing malaria and other vectors for diseases such

as encephalitis, filariasis, bilharzia and cholera [15, 16]. In

addition, weeds may devalue riverine real estate [17, 18].

Aquatic weeds have been found to severely reduce the

flow capacity of irrigation canals thereby reducing the

availability of water to the agricultural fields. The flow

of water is reduced by 40–95 percent and retardation

coefficient increases from 0.024 to 0.055 in irrigation

channel [19, 20]. In paddy fields, water hyacinth has been

reported to interfere with seed germination and seedling

establishment, resulting in heavy economic losses of up

to US$24 million [20]. The dense growth of aquatic

weeds may also interfere with navigation, damage pumps

and turbines in superthermal and hydroelectric power

stations, affecting electricity production and increasing

the cost of maintenance of power stations. The red

water fern, Azolla filiculoides Lam. 1783 (Azollaceae), alone

and often together with Lemna minuta Kunth, L. minor

(Thuill. ex P. Beauv.) A. Chev. and Spirodela polyrhiza (L.)

Schleiden, settles in ponds, ditches, water reservoirs,

channels and slow-flowing rivers, forming dense mats.

These mats of floating plants can affect the aquatic habitat

by eliminating submerged plants and algae [21], preventing

their photosynthesis and blocking oxygen diffusion.

For these reasons, invasive aquatic plant infestations need

to be controlled to mitigate their negative impacts on

ecosystems, livelihoods and economies.

There are several control mechanisms that have been

implemented for preventing the spread of, or eradication

of, aquatic weeds, which include physical (harvesting,

water-level fluctuation, sediment alteration, nutrient lim-

itation and light alteration), chemical (herbicides) and

biological control (using living organisms, such as insects,

nematodes, bacteria or fungi) strategies. Each has its

benefits and drawbacks. Manual and mechanical control

methods are used widely but they are not suitable for

large infestations and are generally regarded as a short-

term solution [22]. Although chemical control methods

are available that offer quick solution to the unwanted

vegetation, they have their own limitations because of

their non-target environmental impact [23–26]. There are

other aspects such as toxicity to fish and other forms of

life in the aquatic habitat, the deterioration of water

quality from persistent chemical and dispersal of toxic

chemicals through food chain [23, 27]. Such environ-

mental concerns have fuelled the upsurge of interest in

biological control of aquatic weeds, which is considered a

cost-effective, permanent and environmentally friendly

method. Biological control of weeds with plant pathogens

is an effective, safe, selective and practical means of weed

management that has gained considerable importance

over the last five decades. They are considered to be the

most effective alternatives to chemical herbicides [28].

DeVine, developed by Abbott Laboratories, USA, was

the first commercial mycoherbicide derived from fungi

Phytophthora palmivora Butl., a facultative parasite that

produces lethal root and collar rot of its host plant

Morrenia odorata H. and A. Lindl. (strangler wine) and

persists in soil saprophytically for extended period giving

a long-term control [29]. The use of plant pathogenic

fungi as biological control agent has often been very

successful against various exotic aquatic and terrestrial

weeds.

This paper reviews various aspects of biological control

using micro-organisms and their concepts and applications

in integrated management of aquatic weed and proposes

novel integrated weed-control strategies.

Bioherbicides

In the last few decades, bioherbicides have gained con-

siderable importance. These organisms offer considerable

scope as potential agents against several weeds [30–32].

They have relatively critical application times and sup-

press, rather than eliminate, a pest population. They have

limited field persistence and a short shelf life and present

no residue problems, so are safer to humans and the

environment than conventional pesticides [33]. Success

stories of these products and the expectation of obtaining

perfect analogues of chemical herbicides have opened

new routes for aquatic weed management.

Microbial herbicides as inundative biocontrol agent

Fungal agents formulated as ‘mycoherbicide’ are projected

as an environmentally benign replacement for chemical

herbicides in weed infested areas [34, 35]. Development

of microbial herbicides can be especially beneficial against

the herbicide-resistant weeds. Commercial mycoherbi-

cides first appeared in the US market in the early 1980s

with the release of the products called DeVine, Collego

and BioMal [36]. Early research and field success of bio-

herbicides, particularly mycoherbicides, suggested that a

large number of spores or mycelial mass of native, target-

specific fungi could be used to turn a normally endemic

pathogen into an epidemic [37]. The use of phytopatho-

genic fungi as biological control agents for aquatic weed

species has increased the global attention during the last

few decades. Several workers [38–43] undertook field

surveys to neotropics in search of promising exotic

pathogens.

Among all aquatic weeds, fungal pathogens associated

with water hyacinth have been extensively studied.

Among the promising pathogens of water hyacinth are

Alternaria eichhorniae Naj Raj & Ponnappa, Acremonium
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zonatum (Sawada) W. Gams, Cercospora piaropi Tharp.

(=C. rodmanii Conway; [44]), Myrothecium roridum Tode,

Rhizoctonia solani J. G. Kühn, Uredo eichhorniae Gonz. Frag.

and Cif., etc [45, 46]. C. piaropi was associated with rapid

and widespread decline of water hyacinth in the Rodman

Reservoir, Florida [47]. Thus it was extensively studied

[48, 49], patented by the University of Florida, USA

and has been commercially developed as mycoherbicide

against water hyacinth under the trade name ABG-5003

by the Abbott Laboratories of USA [36, 50]. Field testing

of the bioherbicide failed to produce desired results, and

additional development of the product never followed

[51]. A. eichhorniae has been extensively studied for bio-

control potential against water hyacinth [52–54]. It has

been shown to be reasonably host-specific to water

hyacinth [52, 55] and capable of severely damaging and

suppressing this weed [55–57]. However, among several

problems, in developing it as a potential mycoherbicide,

one of the major obstacles to the use of A. eichhorniae as a

mycoherbicide for water hyacinth is its requirement for

at least 10 h of dew to allow the applied inoculum to

germinate and infect and, to an extent, to colonize the

weed [55]. The rust fungus U. eichhorniae, field recorded

only in South America, despite showing great potential

against water hyacinth [41], could not be released in the

field because all life stages of the rust had not been

documented [32]. A. zonatum was widely studied by Rintz

[58] from a classical biocontrol perspective. It was con-

cluded that the pathogen did not seem capable of killing

water hyacinth or seriously deter their prolific growth in

USA and it did not appear to cause significant damage.

However, more virulent strains are reported to occur in

Mexico [40]; so better strains may be obtained in future

from other water hyacinth-infested areas. Despite this

rich microbial biodiversity, no practical microbial herbi-

cide has been developed thus far other than C. piaropi for

water hyacinth.

It is surprising that not much work has been done to

study the plant pathogens of S. molesta, another aquatic

weed of great significance. Possibly the great success that

resulted from the introduction of Cyrtobagous salviniae

Calder and Sands has reduced the need for studying

additional agents of the weed [59]. However, several

preliminary studies [60–64] have brought into some

potential pathogens such as Phoma glomerata (Cda)

Wollenw. and Hochapf., Nigrospora sphaerica (Sacc.)

Mason, M. roridum Tode ex Fries, R. solani Kühn and

Verticillium nigrescens Pethybridge as potential pathogens of

salvinia species.

Barreto and Torres [65] reported two pathogenic

fungi, Nimbya alternantherae (Holcomb and Antonopoulos)

Simmons and Alcorn and Cercospora alternantherae Ellis

and Langlois as potential fungi on alligator weed, A.

philoxeroides (Mart.) Griseb. Cercospora pistiae Nag Raj,

Govindu and Thirumalacharand and Cercospora canescens

Ellis and Martin have been reported on P. stratioites from

various parts of the world [66].

Surveys for pathogens of hydrilla, Hydrilla verticillata

(L.f.) Royle and Eurasian water milfoil, Myriophyllum

spicatum L. with classical biological control potential were

carried out in the 1990s in Asia and Europe [67–69].

Although the biological control potential of several

promising isolates from these surveys has been evaluated

[67, 70], further studies are needed to demonstrate the

safety and efficacy of these pathogens. Fungal pathogens

against several other aquatic weeds including Fusarium

culmorum (Wm.G.Sm.) Sacc., Plectosporium tabacinum

(J.F.H. Beyma) M.E. Palm, W. Gams & Nirenberg and

Mycoleptodiscus terrestris (Gerdemann) Ostazeski against

hydrilla [71, 73] have been considered. Studies by

Smither-Kopperl et al. [72, 74] showed that under

laboratory conditions, P. tabacinum was highly pathogenic

to hydrilla shoots maintained in aqueous solutions in test

tubes. Infected shoots became slightly chlorotic within

24 h and the leaves became flaccid. There was also an

increase in disease severity as inoculum concentration

increased. M. terrestris has been extensively studied as a

bioherbicide for hydrilla management singly and in com-

bination with herbicides [73, 75–77]. An aggressive isolate

of M. terrestris was reported from the surveys conducted

in Texas during the 1990s, which demonstrated the

excellent potential for development as a bioherbicide

[77]. In developing M. terrestris as a bioherbicide, emphasis

has been placed on the production of microsclerotia that

are melanized, compact hyphal aggregates that may sur-

vive desiccation and serve as the over wintering structure

for the fungus rather than thin-walled spores (conidia) or

hyphal units [77]. In a liquid broth culture medium,

microsclerotia can be induced to develop over a 4-day

fermentation period [77]. The microsclerotial propagules

are then harvested through a dewatering process, air

dried to moisture content of 5–10%, vacuum packed and

stored at 4�C. A prototype formulation of M. terrestris,

positively tested for efficacy against dioecious hydrilla was

further produced by Trans America Product Technology,

Inc. (St. Charles, MO), by incorporating the fungus into a

patented biocarrier, Biocar2 405. Initial test tube studies

demonstrated that both granular and caplet formulations

induced severe disease on excised hydrilla shoot tissue

at two weeks post inoculation. Low, medium and

high dosage rates of the granular formulation applied

to rooted hydrilla in 12 litre columns reduced shoot

biomass at 4 weeks post-application by 87.7, 94.8 and

99.2%, respectively, compared with untreated controls

[78]. In tank studies, a granular formulation reduced shoot

biomass of hydrilla grown in 1700 litre tanks by 97.5%

at 4 weeks post-application [78, 79]. However, initial field

trials of M. terrestris formulated with Biocar2 405 failed

because the company changed the ingredients in the

carrier that inadvertently killed the fungus [80, 81].

The submerged aquatic weeds, Egeria densa Planchón

and E. najas Planchón are reported to be severely

damaged by Fusarium graminearum Schw. The plants

developed progressive chlorosis, followed by necrosis and
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complete tissue disintegration, after being exposed to

inoculum of this isolate. A series of in vitro and in vivo

studies that were carried out resulted in a possible pro-

duct provisionally called FUSGRA [59].

Morris et al. [82] recorded the occurrence of

Xanthomonas campestris (Pammel) Dawson causing a

bacterial disease of parrot feather, Myriophyllum aquaticum

(Vell.) Verdc, in South Africa. The disease was charac-

terized by the wilting and greying of scattered, individual

aerial shoots from the tip downward for about 10 cm.

Microscopic examination revealed that the xylem vessels

of the stems and leaves were filled with X. campestris cells.

Although natural infections seldom caused more than 1%

of the aerial shoots to be affected, an inundative applica-

tion of the bacterium at 108 colony-forming units (cfu)/ml

produced 100% shoot infection when the plants were

sprayed in the morning when guttation droplets were still

present on the leaves [82]. Although all aerial parts of

the plant were dead, about 6 weeks later new shoots

appeared from the submersed stems and the plants

recovered. Examination revealed that the bacterium did

not invade the older underwater stems. Because of this

inability to kill submersed biomass and the ability of the

plant to replace killed shoots, the bacterium was not

considered an effective bioherbicidal agent [82] unless

integrated with other control options.

Several authors [83–85] studied pathogens associated

with M. spicatum, but none of them had potential to be

effective under field conditions. Often under greenhouse

conditions, many weeds can be easily killed with myco-

herbicidal agents applied at high doses. In the natural

environment or field conditions, their evolutionary

balance allowed weed populations to withstand most

pathogen attacks because of their genetic heterogeneity.

Phytotoxic metabolites from micro-organisms

as bioherbicide

Plant pathogenic fungi are one of the most effective bio-

logically based alternatives to chemical herbicides but

several ecological constraints are associated with them as

most pathogens require environmental parameters to be

met before infection or symptoms of disease can occur.

In many instances, environmental constraints, such as

adverse temperature, soil or water pH and humidity are

responsible for reduced disease incidence and severity

[86]. Furthermore, environmental conditions are ever-

changing, and are difficult to predict or duplicate growth-

chamber studies. To overcome these problems attention

is focusing on the secondary metabolites produced by the

pathogens. Microbes have been a profitable source of

phytotoxins with the potential to lead to new herbicides

[87]. Several workers [88–90] isolated a toxin from

A. eichhorniae and obtained leaf necrosis on water

hyacinth. Metabolites of a fungal pathogen of hydrilla have

shown phytotoxicity against the weed [91]. More such

studies are required to be undertaken to develop

potential mycoherbicides for aquatic weeds.

Mycoherbicides in Integrated Management of

Aquatic Weeds

It is expected that an inundative application of pathogen

would overwhelm plant defence mechanisms resulting in a

disease epidemic and reduction in biomass similar to that

achieved with the use of herbicides. For several weeds

such as salvinia and Azolla, the use of single insect bio-

logical control agent has been sufficient to effect control

but novel approaches are required for the control of some

of the other aquatic weeds such as water hyacinth [3].

Integrated management of weeds is a holistic approach

aimed at minimizing weed impact while simultaneously

maintaining the integrity of the ecosystem. The integration

of several techniques reduces the reliance on any single

control technique.

There is evidence that combinations of treatments can

be more effective for controlling several weeds than

individual treatments [92, 93]. There have been reports

on vectoring of pathogenic fungi by insects [94–96].

Several insect biocontrol agents have also played an

important role in spread of phytopathogens of a specific

weed [97–100]. Interactions between arthropods and

several saprophytic and parasitic fungi and bacteria are

common on arthropod-damaged water hyacinth [101].

The efficacy of A. zonatum and C. piaropi were significantly

enhanced when applied to water hyacinth in presence of

Neochetina weevils [102, 103]. When feeding, weevils

made holes in the leaves that allowed the fungi to pene-

trate. During some of our recent studies, we found that

disease index of some of the potential phytopathogens of

water hyacinth in South Africa was significantly higher on

Neochetina-damaged water hyacinth as compared with

undamaged plants [92].

Further, combined treatment using two- and three-

pathogen combinations have also resulted in causing

larger lesion diameters on water hyacinth than any of the

pathogens tested singly [93]. Templeton and Heiny [104]

suggested that several isolates of one pathogen or several

species of pathogens each having slightly different environ-

mental requirements could be mixed in the formulation to

ensure that at least one would encounter the optimal

environmental window. Hasan and Ayers [105] reported

that interaction between the biotroph and necrotroph

occurs at the infection site of biotrophs, where infection

by one pathogen makes the host more susceptible to

secondary infection. The synergistic relationship of two

pathogens can provide biological and economical feasibility

by the use of the mixtures of two or more fungi for effective

control of one or more weeds. Den Breeyen [106] while

conducting similar study reported greater lesion diameters

on water hyacinth when using combination of pathogens

than lesion diameter using individual pathogens only.
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Integrating sub-lethal doses of chemical herbicides,

phytotoxins from plants or microbes or growth retar-

dants with fungal pathogens is a promising technology that

will play an important role as an alternative aquatic plant

management tool. Charudattan [107] attempted to inte-

grate a microbial herbicide, natural population of arthro-

pods and chemical herbicides. He suggested a judicious

combination of chemical and biological control over time

and space may help reduce the water hyacinth manage-

ment costs by improving management efficiency. Ray et al.

[26] recommended integration of herbicide glyphosate at

low doses with the insect and fungal biocontrol agents.

However, at higher concentration the herbicides can have

detrimental effect on the biocontrol agents.

Integrated weed management practices have long

remained unnoticed as an approach for controlling sub-

mersed aquatic weeds. The discovery of herbicide-

resistant hydrilla in several lakes in Florida has elevated

the need to identify new technologies that minimize

recurring use of chemicals [108]. Recent studies have

shown that combining the indigenous fungal pathogen,

M. terrestris, with low doses of herbicides has excellent

potential as an integrated strategy for long-term man-

agement of hydrilla while reducing the risk of damage to

desirable, non-target species [75–77]. Netherland and

Shearer [76] found applying sublethal doses (2mg/l) of

fluridone with either 100 or 200 cfu/ml of M. terrestris

reduced hydrilla biomass more than 90%, and was more

efficacious than applying either of the control agents

alone. Studies by Nelson and Shearer [108, 109] on

integrating fungi and herbicide to control Eurasian water

milfoil using M. terrestris and the herbicide 2,4-D resulted

in better weed control compared with either of the

agents used independently. Sorsa et al. [110] demon-

strated that combining low levels (0.65–1.29 ppm) of

endothall with the fungal pathogen Colletotrichum gloeos-

porioides (Penz.) (Penz. & Sacc.) significantly enhanced

control of Eurasian water milfoil. Additional treatment

benefits included reduced chemical input into the envir-

onment, longer-term weed control, and increased selec-

tivity as a result of lower herbicide use rates.

A successful implementation of integrated weed

management programmes requires long-term planning,

knowledge of the biology and life cycle of the weed and

the appropriate control methods. It is also important to

recognize the strengths and limitations of each control

techniques and to integrate the appropriate technique in

time and space to achieve the best result.

Future Trends of Mycoherbicides in Aquatic

Weed Control

Although enormous efforts have been made to control

aquatic weeds in the past few decades, several of them are

still problematic in various parts of the world. It is a

challenge to develop an effective bioherbicide that is

acceptable for use in practical weed management pro-

grammes. During the last two decades, the society has

experienced a growing interest in organic farming and

eco-friendly approaches of pest management, partly as a

result of the growing public awareness about environ-

mental degradation and contamination of soil and water.

Researchers and policy makers are becoming conscious of

the short-term benefits of using chemical herbicides and

long-term positive effects of the use of mycoherbicides

and other ecologically safe methods to deal with noxious

weeds. Future weed management technologies will take

on novel manifestations improving microbial herbicide

technology with an aim to eliminate or greatly reduce the

use of chemical herbicides. Such improvement can only

be brought about by renewed research on improving

the potential of existing microbial agents of weeds with

research on improving their formulation (including mass

culturing, adjuvant and shelf life), application technologies

and also perhaps using tools of biotechnology and genetic

engineering. For example, Tiourebev et al. [111] have

attempted a new approach to enhance virulence of a

microbial agent by selecting strains that are capable of

producing high levels of amino acids that can suppress the

growth and development of plants causing leaf distortion,

loss of apical dominance and stunted growth. Charudattan

et al. [112] altered the virulence and host range of a

bacterium by inserting genes, which encoded for the

production of bialaphos, a glutamine-synthetase inhibiting

herbicide. Alteration of such bacterial genes could pro-

duce overall increases in virulence, host range or other

related traits. Transfer of genes controlling toxin pro-

duction or specific enzymes to improve mycoherbicide

performance is also an important arena for development

[113]. Similarly, it would be possible to remove un-

desirable characters of a plant pathogen using standard

genetic engineering practices. For example, a mammalian

toxin gene could be removed or disrupted. Today,

virtually any heritable trait of a bioherbicide can be

enhanced or suppressed using techniques of genetic

engineering [114]. Molecular data can clarify taxonomy

and evolutionary relationships, and uncover evidence of

closely related species that cannot be morphologically

distinguished. Thus microherbicides for management of

aquatic weeds hold great potential in the near future.
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