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ABSTRACT

Aim To identify whether eradication or containment is expected to be the most

cost-effective management goal for an isolated invasive population when

knowledge about the current extent is uncertain.

Location Global and South Africa.

Methods We developed a decision analysis framework to analyse the best

management goal for an invasive species population (eradication, containment or

take no action) when knowledge about the current extent is uncertain. We used

value of information analysis to identify when investment in learning about the

extent will improve this decision-making and tested the sensitivity of the

conclusions to different parameters (e.g. spread rate, maximum extent, and

management efficacy and cost). The model was applied to Acacia paradoxa DC, an

Australian shrub with an estimated invasive extent of 310 ha on Table Mountain,

South Africa.

Results Under the parameters used, attempting eradication is cost-effective for

infestations of up to 777 ha. However, if the invasion extent is poorly known,

then attempting eradication is only cost-effective for infestations estimated as

296 ha or smaller. The value of learning is greatest (maximum of 8% saving)

when infestation extent is poorly known and if it is close to the maximum extent

for which attempting eradication is optimal. The optimal management action is

most sensitive to the probability that the action succeeds (which depends on the

extent), with the discount rate and cost of management also important, but

spread rate less so. Over a 20-year time-horizon, attempting to eradicate

A. paradoxa from South Africa is predicted to cost on average ZAR 8 million if

the extent is known, and if our current estimate is poor, ZAR 33.6 million as

opposed to ZAR 32.8 million for attempting containment.

Main conclusions Our framework evaluates the cost-effectiveness of attempting

eradication or containment of an invasive population that takes uncertainty in

population extent into account. We show that incorporating uncertainty in the

analysis avoids overly optimistic beliefs about the effectiveness of management

enabling better management decisions. For A. paradoxa in South Africa,

attempting to eradicate is likely to be cost-effective, particularly if resources are

allocated to better understand and improve management efficacy.
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INTRODUCTION

One of the few methods that results in long-term improve-

ments of biodiversity indicators is the eradication of invasive

alien species (McGeoch et al., 2010), where eradication is

defined as the elimination of every single individual of a species

from an area to a point at which re-colonization is unlikely to

occur (e.g. Myers et al., 1998). However, an attempted

eradication requires concerted sustained effort, and as such is

likely to be successful only if there is a champion with the

authority to ensure work progresses (Simberloff, 2009; Kraus &

Duffy, 2010).

Assuming there is sufficient administrative support, a range

of ecological and biological attributes have been identified,

which will then affect the feasibility of eradication. Key

attributes for plants include life-form (trees and shrubs are

generally easier to eradicate than herbs), detectability prior to

reproduction, capacity to form a long-lived soil seed bank, the

potential for long-distance propagule dispersal and the avail-

ability of effective control methods (Myers et al., 2000;

Simberloff, 2003b; Panetta, 2009). One of the key criteria used

as an indicator of whether an eradication attempt is likely to

succeed is the spatial extent of the alien population, with

eradication more likely when the area is small and when

detection occurs soon after introduction, before seed banks or

satellite populations are established. Indeed, resources required

typically increase with the area infested, and the probability of

success shows a concomitant decline (Myers et al., 2000;

Rejmanek & Pitcairn, 2002; Simberloff, 2003b; Woldendorp &

Bomford, 2004; Panetta, 2007, 2009). The majority of

successful plant eradications have been instigated soon after

a population started spreading and dealt with a small spatial

extent (e.g. < 100 ha; Mack & Lonsdale, 2002). Conversely,

most attempts to eradicate invasive plant infestations in

California larger than 1000 ha have failed (Rejmanek &

Pitcairn, 2002). However, the spatial extent of a newly

discovered alien species is usually poorly known, and methods

to delimit the spatial extent efficiently are few (Panetta &

Lawes, 2005; Leung et al., 2010).

Even if eradication is technically feasible, it is still necessary

to assess the economic viability of possible eradication; in

particular, whether the costs of eradication can be justified in

the context of the predicted benefits associated with the

eradication (Panetta, 2009). While effective eradication

depends on effective containment, if eradication is discarded

as an option at an early stage, management resources can be

redeployed to reduce impacts of the invasive alien or slow its

spread (Myers et al., 2000; Panetta, 2009). For example,

resources could be allocated to limiting satellite populations

rather than attempting to controlling established stands

(Moody & Mack, 1988; Higgins et al., 2000), or efforts could

be focussed at the perimeter of existing populations to slow

spread (e.g. by creating a barrier of unsuitable habitat).

Similarly, there are benefits in introducing classical biological

control agents as soon as practicably possible (Olckers, 2004),

but, given the resources required, the inherent risks and the

aim of reducing the target population to a low stable level,

classical biological control should only be seriously considered

if eradication is no longer the goal (McFadyen, 1998).

The decision to attempt eradication, therefore, is best made

quickly, but it has to be made in the context of poorly known

spatial extent (Panetta, 2009), poor population-level informa-

tion and potentially rapidly expanding populations (Simberl-

off, 2003a).

Decision models are used increasingly in environmental

management (Hauser et al., 2006; Chadés et al., 2008; Rout

et al., 2009a) and have previously been applied to invasive

species control (Sharov & Liebhold, 1998; Higgins et al., 2000;

Shea & Possingham, 2000; Cacho et al., 2006, 2008; Regan

et al., 2006; Bogich et al., 2008; Rout et al., 2009b; Epanchin-

Niell & Hastings, 2010; Moore et al., 2010; Shea et al., 2010).

Developing such models and facilitating their application in

regional conservation planning and management is a key

priority and challenge for conservation biogeography (Rich-

ardson & Whittaker, 2010). A decision model (1) allows us to

evaluate how different strategies will contribute to meeting a

specific objective or management goal, (2) provides a useful

framework for trading off the cost and benefits of a number of

different strategies and (3) is very useful for finding cost-

effective management strategies. However, there is often

uncertainty associated with a decision problem, including

uncertainty in parameter estimates, which can make it difficult

to identify an optimal strategy that is robust. As eradication

attempts should be made soon after an invasive population is

first detected, it is likely that uncertainty will be high (Mack &

Lonsdale, 2002; Panetta, 2009). Explicitly recognizing this

uncertainty and accounting for it in the analysis is critical to

achieving a robust outcome. A particularly difficult issue is

identifying when it is worthwhile investing in learning (i.e.

research or monitoring that will reduce uncertainty), given that

this choice will most likely take resources away from on-the-

ground control efforts (Baxter & Possingham, 2011). We can

either choose to invest solely in learning about the uncertain

elements or integrate learning into the management process

through active adaptive management, where management

options are implemented in order to learn about the system

(Walters, 1986; D’Evelyn et al., 2008; McDonald-Madden

et al., 2010). How can we decide if it is worth investing in

learning?

One approach is to use expected value of information

analysis to identify whether uncertainty is important for our

decision (Dakins, 1999; Yokota & Thompson, 2004; Claxton,

2008; Runge et al., 2011). Expected value of information

analysis is a well-established decision theory tool and is used

extensively in medical decision-making and the design and

evaluation of clinical trials (Felli & Hazen, 1998; Yokota &

Thompson, 2004; Claxton, 2008) but is less commonly applied

in an environmental context (Dakins, 1999; Ritchie et al., 2004;

Mantyniemi et al., 2009), although it has recently been applied

in conservation management (Polasky & Solow, 2001; Runge

et al., 2011). Expected value of information analysis measures

how our expected performance would change if we were able
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to resolve or reduce our uncertainty prior to making our

decision. The simplest measure to calculate is the expected

value of perfect information (EVPI). EVPI measures the

increase in expected performance if we were able to resolve all

our uncertainty prior to making the management decision

(Yokota & Thompson, 2004; Runge et al., 2011). If EVPI is

greater than zero, then finding out more about the system

would improve our management decision (and so our

management strategy). This means that our optimal strategy

changes depending on the values of the parameters and our

prior belief about the system. If expected performance is

measured in monetary terms, EVPI can be interpreted as the

maximum amount that we would pay to resolve our uncer-

tainty (Yokota & Thompson, 2004).

The decision as to whether eradication or containment

should be attempted needs to be made despite significant

uncertainty about the extent of the infestation, the likely rate of

spread, the effectiveness of management actions and the level of

threat posed by the species. In this study, we develop a decision

model to address when we should switch our management

strategy from eradication to containment using a cost-benefit

approach where our objective is to minimize the overall costs

associated with invasion. Our decision model is very similar to

that analysed by Cacho et al. (2008) to address the same

question. However, we extend their analysis by using value of

information analysis to examine how uncertainty in the extent

of the infestation affects the decision and evaluates the

potential for improving management outcomes through

learning. We apply the decision model to assess the options

of eradication and containment of the only known Acacia

paradoxa population in South Africa, located in Table Moun-

tain National Park (TMNP) in Cape Town (Zenni et al., 2009).

Study system

As a group, Australian acacias include several globally impor-

tant plant invaders (Richardson et al., 2011). Moreover, the

group, in general, poses a high risk of invading and causing

significant impacts (Wilson et al., 2011). However, while

several eradication efforts are ongoing – for example Acacia

retinodes is the target of an ongoing eradication programme on

the island of Maui in Hawai’i (Kraus & Duffy, 2010) – none

has yet been completed (Wilson et al., 2011). This is despite

several factors that make the group amenable to eradication:

plants tend to be visible and distinctive, treating adult plants

without creating further spread is reasonably easy, and the

relatively large seeds means that controlling dispersal is much

easier than for other plant invaders (such as many small-seeded

grasses). The major limitation for controlling acacias is the

long-lived seed banks (Gibson et al., 2011), which means

successful eradication will take sustained effort over decades

(Wilson et al., 2011).

Sixteen Australian acacias (and one in the closely related

genus Paraserianthes) are currently regarded as invasive aliens

in South Africa (van Wilgen et al., 2011). While most are

widespread invaders (Nel et al., 2004), five have very restricted

ranges and four (A. adunca. A. implexa, A. paradoxa and

A. stricta) are classified under South African law as ‘category

1a’ invaders (i.e. require compulsory control, in essence legally

mandated targets for eradication). Acacia paradoxa D.C. is a

leguminous thorny shrub growing up to 4 m and is native to

grassy woodlands and open forests in temperate and subtropical

regions of south-eastern Australia. It produces hard seeds that

form a dormant soil seed bank with germination stimulated by

fire (Brown et al., 2003). Seeds are thought to be dispersed by

ants in the native range, and although the seed dispersal vectors

in South Africa are not known, spread rates appear to be fairly

slow (Zenni et al., 2009). Acacia paradoxa has also been

reported as a naturalized alien in Western Australia (Western

Australian Herbarium, 2010), Tasmania (Simmons, 2009), New

Zealand (Webb, 1980; Webb et al., 1988), California (Fuller,

1967) and Israel (Dufor-Dror & Danin, 2004).

As part of a new national Early Detection and Rapid Response

Programme funded by the Working for Water Programme, all

Australian acacia species with limited alien ranges in South

Africa are being assessed to determine whether they can be

eradicated. Given that such eradication programmes focus

solely on the target species and are set up separate from ongoing

area-specific management, in South Africa (at least) eradication

programmes represent an additional management cost.

METHODS

We develop a decision model to examine whether eradication

of A. paradoxa in South Africa is economically cost-effective

and to identify whether investing resources to more accurately

determine the spatial extent of the existing population will

assist in making this decision.

Decision model

The decision problem is ‘What type of management action

should be attempted for an infestation of current spatial extent

x ha?’ We consider three options—eradicate, contain, and take

no action—and identify the values of x at which the optimal

management action changes. We define the best management

action as that which minimizes the total costs (i.e. the sum of

management costs and production/amenity losses (Fig. 1; see

Appendix S1 in Supporting Information for the full model

description)). To do this, we must define the potential

management actions and their associated costs.

First, the goal of eradication is to remove the entire

population (every last individual including all seeds). This

requires extirpating the existing population while simulta-

neously stopping spread (containment). The infested area (and

an additional containment zone) will need to be searched and

treated over an extended period for eradication to be achieved.

Hence, we expect eradication costs to increase in proportion to

the area infested. In this framework, we assume that it is a

simple linear relationship that does not take into account

project initiation costs that are disproportionate to area, nor

any potential economies of scale for treating large areas.

Eradicate or contain acacias?
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Second, in the event that eradication is unfeasible or an

eradication effort fails, management can focus on containment.

We assume that containment stops the spread of the invasion.

Containment is achieved here by creating a containment zone

around the perimeter of the infestation of width d, where d is the

radial growth rate of the population, and searching and treating

all individuals that establish in the containment zone. While

treating the main infestation might also contribute to contain-

ment, for example by reducing seed production, in this model

we consider the perimeter costs to dominate and so assume that

containment costs are proportional to the area of the contain-

ment zone (given the spatial extent is roughly circular).

The third option that we consider is to take no action and let

the invasion take its course. This ‘strategy’ provides a baseline

with which we can compare the management strategies. If we

take no action, we assume that the infestation grows as a circle

with a radial growth rate (d) that decreases as the size of the

infestation approaches the maximum extent (K), which

specifies the maximum possible extent that the species could

occupy. Note that the ‘no action’ option is included as a

baseline and does not represent a general area management

strategy.

We combine estimates of spread rate and maximum extent

with estimated cost of the infestation to produce an estimate of

the losses associated with the infestation through time. This

impact loss includes all production, biodiversity and amenity

losses that accrue as a result of the area that is infested. For

example, impacts associated with Australian acacia invasions in

South Africa include water loss, reduced productivity of

grazing, loss of biodiversity, changes to the nitrogen cycle and

reduced recreational amenity (de Wit et al., 2001; Le Maitre

et al., 2011).

The total expected cost of the infestation for each action is

the sum of the management cost (Cost) and the loss function

(Loss) for that action (see Appendix S1 for specification of cost

and loss functions). The optimal action for a given infestation

size is that which has the smallest total expected cost at that

infestation size. We find the critical values when the total

expected costs of the different actions are equal.

xc : CostðEÞ þ LossðEÞ ¼ CostðCÞ þ LossðCÞ
xn : CostðCÞ þ LossðCÞ ¼ LossðNÞ

ð1Þ

These values indicate the extent of the infestation when the

different actions become optimal: xc is the extent when we

should switch from eradication (E) to containment (C), and xn

is the extent when it is optimal to take no action (N).

Using a similar approach to Cacho et al. (2008), we focus

our analysis on these two decision thresholds: (1) the extent of

infestation when we change our action from eradicate to

contain (when the expected combined losses and cost of

eradication and containment are equal) and (2) the extent of

infestation when we change our action from contain to no

action (when the expected combined losses and cost of

containment and taking no action are equal). It is not possible

to derive an explicit solution for these equations, so we solved

the equations numerically using the zeros function in the

software package MATLAB R2009a (Mathworks Inc., Natick,

Massachusetts, USA).

Incorporating uncertainty and the value of

information

We have uncertainty in all the parameters and wish to

understand how this will impact our decision. In this study, we

focus on uncertainty in the extent of the infestation. Suppose

that we have an estimate of the area of extent but we are

uncertain about the value (we have some measure of standard

deviation). Here, we assume that the true value is described by

a triangular distribution (that need not be symmetrical) with

mode x, minimum value xmin and maximum value xmax.

The expected value of each action is found by integrating the

combined losses and management costs over all possible

extents, weighted by our prior belief in that extent (Appen-

dix S1). Our optimal action is the action with the smallest

expected value, and this provides us with our estimate of

expected value under uncertainty, EVu. We can also calculate

our expected performance if we had full information and so

knew the extent of the infestation prior to making our

decision. We call this the expected value under certainty, EVi.

The EVPI is the improvement in performance gained by

making decisions under certainty:

EVPI ¼ EVi � EVuj j ð2Þ

Sensitivity analysis

We examined how uncertainty in other parameters affected the

model with a sensitivity analysis looking at the response of the

model to perturbations from the current estimates. For each

parameter in the model, we ran the model again for 10 levels of

the parameter (keeping the others constant). The parameters

No action

• Eradication •

•

•

• Impact

•

•

• • Impact 

• Contain

• (Eradication)

•

• (Contain)

• (Eradication)

Eradicate

Succeed

Extent = x

Fail

Succeed

Extent = 0 Extent > x

Contain
Fail

Extent = x

Figure 1 The conceptual model used to decide the best action to

attempt for managing an infestation of x ha. There are three

actions: attempt eradication, attempt containment and take no

action. The diagram shows the possible outcomes resulting in

action. The cost associated with each action is summarized below

the outcome. Costs in brackets are not always incurred and depend

on the path by which the outcome was achieved.
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range from 0.25 to 2.5 times the estimated value. We examined

both changes in the total expected cost associated with the

infestation (i.e. the cost-effectiveness of the decision) and

changes in the decision thresholds (i.e. how much influence a

parameter has on our decisions given our uncertainty in extent).

Parameterization for Acacia paradoxa

Parameter estimates (Table 1) were based on empirical data

where available, and expert judgment where not. Further

details are provided in Appendix S2. Parameters for the

effectiveness of management, spread rate and the costs of

impacts were the most difficult to estimate.

The current extent of the single A. paradoxa population (x)

was estimated as 310 ha. Initial assessment of the infestation

concluded that the infestation was approximately 295 ha in

size (Zenni et al., 2009), with a further 15 ha found on a

follow-up survey (E. van Wyk, pers. comm.). We assume that

it is much more likely that the estimated spatial extent is

underestimated than overestimated and hence set xmin to

155 ha (half of the estimated value) and xmax to 1550 ha (5

times the estimated value). Spread rate was estimated

assuming that the species was introduced 120 years ago

(Zenni et al., 2009) and that the spread rate has been

constant since this time. The assumption of constant spread

rate may underestimate current spread rates as documented

invasions of other species through time suggest that there is

often a lag between introduction and high rates of spread

(Crooks, 2005). However, given that we have no information

regarding changes in distribution through time, we did not

consider it viable to attempt to estimate how spread rate

might have changed.

We used two approaches to parameterize the maximum

possible extent (K). First, we assumed that the population

could spread throughout all suitable areas in southern Africa.

To estimate the area of potential distribution for A. paradoxa

in southern Africa, we used the bioclimatic niche model

CLIMEX (Sutherst & Maywald, 1985; Sutherst et al., 2007; see

Appendix S2, Table S1) built on and projected with the

CliMond V1 global climate data set at 10’ resolution (Kritcos

et al., 2011). We assumed that the maximum extent equalled

the CLIMEX-derived potential distribution. We consider this

an upper bound for the maximum extent as it does not take

into account other environmental factors or biotic interactions

that might limit species distributions. We also considered the

case if maximum extent was constrained to TMNP. This

second approach evaluates the efficacy of the different

management approaches within the context of the park alone.

We used the full area of TMNP as the maximum extent; this is

again an upper bound as it assumes the entire park is suitable.

This latter scenario was motivated by the limited opportunities

for dispersal from the park (TMNP is surrounded by the city of

Cape Town and the Atlantic Ocean). The results obtained for

both scenarios were qualitatively similar, and as such, we

present the TMNP results in Appendix S3.

There is very little information about the effectiveness of

eradication attempts or the effectiveness of containment for

any invasive plant. In a rare evaluation of effectiveness,

Rejmanek & Pitcairn (2002) analysed data from the California

Department of Food and Agriculture describing 56 eradication

attempts for 18 plant species over the period 1972–2000 and

reported success as a function of infestation size. They found

that eradication success was approximately 33% for species

with a spatial extent between 0.1 and 100 ha and 25% for a

Table 1 Definition of the decision model parameters and the values of the parameters used for the example of Acacia paradoxa in South

Africa.

Parameter Definition Units Value

x Estimated current extent of area that requires treatment ha 310

xmin Minimum possible value of x ha 155 (0.5x)

xmax Maximum possible value of x ha 1550 (5x)

ce_ann Cost of eradication per ha per year ZAR ha)1 year)1 1335

et Expected time to eradication year 20

ce Total cost of eradication per ha assuming discount rate d and a 20-year eradication

programme

ZAR ha)1 11,644

ae The extent at which the probability of failure of eradication is 50% ha 750

me How steep the failure curve for eradication is near the inflection point 0.005

cc_ann Annual cost of containment per ha of containment zone ZAR ha)1 year)1 454

cc Total cost of containment per ha of containment zone assuming discount rate of d. ZAR ha)1 14,018

ac The extent at which the probability of failure of containment is 50% ha 1500

mc How steep the failure curve for containment is near the inflection point 0.005

ci Cost of infestation ZAR ha)1 year)1 1701

d Radial growth rate 100 m year)1 1

K Maximum extent that the species could occupy ha 73,804,761

d The discount rate used to calculate the total expected cost of the infestation when left

unchecked, the total expected cost of containment and the total expected cost of eradication

year)1 0.05

Eradicate or contain acacias?

Diversity and Distributions, 17, 1047–1059, ª 2011 Blackwell Publishing Ltd 1051



spatial extent between 100 and 1000 ha. There were no

reported eradications (and few attempts) for infestations

> 1000 ha. However, the data set varied substantially in the

amount of effort allocated and species-specific life histories and

traits (e.g. it included many plant species that are small and

difficult to detect). In a separate study of eradications, Panetta

(2009) cited only one terrestrial eradication of gross area

> 1000 ha (net area 2480 ha), two eradications of gross

infestation size between 100 and 1000 ha and seven eradica-

tions with gross area < 100 ha (net area refers to the area

treated, whereas gross area refers to the area searched

(Rejmanek & Pitcairn, 2002)). This track record, combined

with expert opinion and our assumption of a 20-year

programme, led us to choose a sigmoid-shaped curve (see

Fig. S1) for the probability of successful eradication with the

area for which there is a 50% probability of success, ae, set at

750 ha and the steepness parameter, me, set to 0.005. This

parameterization resulted in a relationship where small infes-

tations had a high probability of eradication success, but

infestations > 1000 ha were likely to fail. There is even less

information regarding the likely success of effective contain-

ment (assuming ongoing funding). Based on discussions with

experts familiar with undertaking alien acacia management in

South Africa, we assumed that the curve had the same basic

sigmoid shape but was likely to be more successful for larger

infestations, so we set ac to 1500 ha (corresponding to a

circumference of 13,729 m).

Treatment costs for high-density and medium-density

populations were provided by the Working for Water

Programme for the on-ground management of invasive

Australian acacias in South Africa. We used their estimated

cost of treating medium-density infestations (ZAR 1335 ha)1)

as our annual estimate of eradicating an infestation. We

estimated that it would take 20 years to successfully eradicate

the invasion assuming annual physical removal of individuals

and that soil-stored seed would be depleted through high rates

of post-fire germination (fires occur regularly at c. 5-year

intervals within the National Park). The total cost of eradica-

tion was calculated assuming that annual treatments were

undertaken each year at a fixed cost with discount rate, d. We

estimated the cost of containment per 100 m of perimeter

using cost data on recent surveys for A. paradoxa assuming

that the main activity associated with containment is to search

the perimeter and physically remove any detected individuals.

We then calculated the total cost of containment assuming that

this cost was going to be incurred every year with discount

rate, d.

Estimates of the cost of impact were based on recent work

undertaken to assess the environmental benefits associated

with invasive species management programmes in South

Africa. Locally applicable negative impacts of invasive acacia

include reduction in surface stream flow, loss of biodiversity,

changes to the frequency and intensity of fires, increase in

erosion, destabilization of river banks, loss of recreational

opportunities, reduced aesthetic appeal, nitrogen pollution and

loss of grazing potential (de Wit et al., 2001). All of these

impacts have not been quantified specifically for A. paradoxa,

so we used water use and grazing potential measures for

A. cyclops and the biodiversity impacts associated with acacia

invasions in South Africa generally. The overall cost of

infestation was calculated as the sum of costs due to water

use, lost grazing potential and biodiversity loss. All costs are

reported in ZAR at 2010 values.

RESULTS

Eradicate or contain?

The model predicts that eradication is the optimal manage-

ment strategy for A. paradoxa infestation sizes up to 777 ha

with containment the optimal strategy for infestations

between 777 and 2465 ha (Fig. 2a). For infestations larger

than this, the model predicts that containment is unlikely to

be successful and so the ‘no action’ approach is optimal by

default.

Hence, the model predicts that the current optimal strategy

for the existing population in TMNP (infestation size of

310 ha) is to attempt eradication. This choice has an expected

cost over the 20-year assessment timeframe of ZAR 8 million,

compared with an expected cost of ZAR 12 million if the

containment strategy is attempted, or a cost of ZAR 146

million (through impacts on water loss, reduced grazing

potential and loss of biodiversity) if no action is taken. The

total expected cost of attempting eradication (ZAR 8 million)

is greater than the cost of the eradication programme (which is
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Figure 2 The expected total cost (losses caused plus management

costs) as a function of the extent of the infestation when (a) there

is no uncertainty in extent and (b) uncertainty in extent is taken

into account. The dark solid line is the expected loss when no

management is attempted. The dashed line is the expected loss for

the eradication action, and the thin solid line is the expected loss

when the containment strategy is used. The circle indicates the

critical point to change from eradication to containment (xc), and

the star indicates the critical point to change from containment to

doing nothing (xn). Parameters are described in Table 1.
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ZAR 5.4 million spread over 20 years). This difference reflects

the additional costs incurred if management fails. For a spatial

extent of 310 ha, eradication has a probability of failure of

10%, and containment a failure probability of 0.2%.

Including uncertainty and value of information

analysis

If the uncertainty in extent is considered in the analysis, the

eradication–containment threshold declines from 777 to

296 ha. The size of the infestation for which eradication is

optimal is much smaller than if uncertainty is ignored,

reflecting the high chance that we have underestimated the

magnitude of the infestation. The feasibility of eradication of

the A. paradoxa population is no longer optimal, and there is

now a much smaller difference between the expected cost of

eradication and containment. The expected cost of eradication

is ZAR 33.6 million, while the expected cost of containment is

ZAR 32.8 million (Fig. 2b). The expected cost associated

with either management action is substantially higher when

uncertainty is considered because potentially larger infestations

are more expensive to treat, and management is more likely to

fail.

Of course, this uncertainty can potentially be resolved. Using

an analysis of the expected value of information, we calculate

the value of resolving this uncertainty by comparing the

expected cost of the best strategy under uncertainty (in this

case containment) with the expected cost if we knew the exact

extent prior to making our decision (i.e. we had perfect

information). The difference is the EVPI, and, in this case, it is

ZAR 2.6 million, which represents an 8% gain in performance.

This value provides an upper bound on the amount that we

could hope to save by making a better informed decision if we

invested in learning about the extent.

We can also calculate how the value of information changes

depending on the estimate of extent. We calculated the value of

information if estimated extent, x, varied from 0 to 4000 ha

assuming xmin = 0.5x and xmax = 5x and the parameter values

used for A. paradoxa (Fig. 3a). The value of information peaks

at the decision thresholds where the optimal strategy changes

(296 and 2488 ha; Fig. 3a). For A. paradoxa, the current

estimated infestation size (310 ha) is very close to the

eradicate–contain threshold, and so the EVPI is close to the

maximum, suggesting that learning would have a substantial

pay-off in this case. When viewed as a percentage of total costs

(Fig. 3b), proportional improvement is greatest at the eradi-

cation–containment decision threshold with a maximum

saving of 8%.

Sensitivity analysis

We also investigated the sensitivity of the model by examining

how parameters affected the expected performance of man-

agement measured as the total expected cost of the infestation

(Fig. 4). Unsurprisingly, total costs are greatest if the discount

rate is low (Fig. 4b). The total expected cost of the infestation

(represented as a proportion of the baseline cost) increases

substantially with the rate of spread (Fig. 4a) and the cost of

the infestation (Fig. 4b), and decreases as the effectiveness of

management increases relative to the initial extent (Fig. 4a).

The total expected cost of the infestation increases only slightly

as the cost of either management action increases (Fig. 4b).

The maximum extent has very little effect on total expected

cost.

We also examined how the value of the decision threshold

changed with key parameters, which reflects the potential for

these parameters to affect our decision space and hence is

likely to have a greater impact on our decision (Fig. 5). The

decision thresholds depend most strongly on the parameters

that describe the effectiveness of the management actions, with

the eradication–containment threshold increasing with the

eradication effectiveness. The eradication–containment thresh-

old increases as the cost of the infestation (and hence the threat

of the infestation) increases, but declines as the cost of

eradication increases and to a lesser extent as expected time to

eradication and the discount rate increase (Fig. 5b). The

decision to switch from eradication to containment is unaf-

fected by the spread rate, the maximum extent, the effective-

ness of containment (Fig. 5a) or the cost of containment

(Fig. 5b).

The containment–no action threshold is most sensitive to

the effectiveness of containment with the threshold increasing

as effectiveness increases (Fig. 5a). The threshold also

increases as the cost of the infestation (Fig. 5b) increases,

reflecting the increased value of management when the

potential damage of the infestation increases. The threshold

decreases as the cost of containment increases, reflecting
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Figure 3 The effect of estimated extent on (a) expected value of

perfect information and (b) the performance gain (%). The

vertical solid lines indicate the decision thresholds ignoring

uncertainty in extent. The vertical dotted line indicates the

extent where the optimal action changes from eradicate to contain

taking uncertainty into account, and the vertical dashed line

indicates the extent where the optimal action changes from

contain to no action when uncertainty is factored in.
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reduced efficiency of this management action. The threshold is

insensitive to maximum extent, the cost, effectiveness or time

to eradication.

DISCUSSION

Including uncertainty in extent

We have used decision theory and a cost-benefit framework to

allocate management resources to minimize the combined

costs and losses associated with the management of invasive

species. For the case of A. paradoxa in South Africa, the model

recommends that eradication is the optimal strategy if we do

not consider uncertainty in extent. The maximum predicted

extent that is economically feasible for eradication (777 ha) is

consistent with previous work that used a similar decision

model to assess the feasibility of eradication for woody weeds

in Australia (Cacho et al., 2008).

If we are confident about the accuracy of the estimated

extent, then eradication is clearly the optimal strategy for

A. paradoxa in South Africa, but our analysis shows that if we

are uncertain about the estimated extent, the choice is much less

clear. In our example, incorporating substantial uncertainty in

the extent results in a much smaller extent for which eradication

is the most cost-effective option (296 ha), suggesting that

containment will be the most cost-effective action. However,

for the current estimated extent (310 ha), the expected cost of

containment and eradication is very similar with neither

management action substantially better than the other. Explic-

itly incorporating uncertainty in extent also increased the

expected cost of either management strategy by a factor of four.

Hence, if we ignore uncertainty in the current extent in our
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Figure 4 The results of the sensitivity analysis showing how the

expected combined costs and losses change as each parameter

varies. The x axis is the multiplier of the parameter estimates for

Acacia paradoxa (Table 1). Each parameter was varied separately.

The parameters considered were (a) spread rate (black), maximum

extent (orange), 50% eradication extent (blue) and 50% contain-

ment extent (green) and (b) cost of infestation (black), discount

rate (orange), cost of eradication (blue), cost of containment

(green) and time to eradication (pink). Parameters are described

in Table 1. Note that the scales on the y-axes differ.
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Figure 5 The results of the sensitivity analysis showing how the

value of the decision thresholds xc (dashed line) and xn (solid line)

changes as each parameter varies. The x axis is the multiplier of the

parameter estimates for Acacia paradoxa (Table 1). Each param-

eter was varied separately. The parameters considered were (a)

spread rate (black), maximum extent (orange), 50% eradication

extent (blue) and 50% containment extent (green) and (b) cost of

infestation (black), discount rate (orange), cost of eradication

(blue), cost of containment (green) and time to eradication (pink).

Parameters are described in Table 1. Note that the scales on the

y-axes differ.
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analyses, we are likely to overestimate the effectiveness of

management and substantially underestimate the cost.

What factors influence our decision?

The decision thresholds, which indicate the point at which the

optimal strategy changes, are most sensitive to the effectiveness

of the different management strategies and to a lesser degree

the discount rate and the costs of management. These

conclusions are similar to previous studies where allocation

of effort depends on search efficiency (Hauser & McCarthy,

2009) and the relative effectiveness of quarantine and surveil-

lance (Moore et al., 2010). This highlights the importance of

gaining a better understanding of management effectiveness

both for identifying effective management strategies and for

improving the probability of success. While conceptually

simple, there have been few attempts to quantify the

effectiveness of a suite management options or how manage-

ment effectiveness and cost interact. Previous studies have

shown that the effectiveness of invasive species management

will improve with increasing allocation of resources (Rejmanek

& Pitcairn, 2002; Woldendorp & Bomford, 2004). Managers

undertaking eradication efforts tend to assume that they are

applying enough effort to be effective; however, the effective-

ness of the programme is rarely evaluated, and little attempt is

made to find the allocation of effort that maximizes the

probability of success. Efforts aimed at identifying the optimal

level of effort to maximize the effectiveness of management

would be valuable empirical and theoretical developments.

The work presented here suggests that it will be difficult to

make good management decisions in the absence of this

information.

The spread rate has a substantial impact on the total cost of

the invasion, but has a surprisingly small influence on the

decision thresholds. This reflects that spread rate is included in

the model as contributing to impact and the cost of

management but does not influence the probability that

management succeeds. This result appears to contrast with

Cacho et al. (2008), who considered spread rate as one of the

most important factors in determining the feasibility of an

eradication attempt. However, in their model, spread rate

contributed to the cost of management and implicitly the

effectiveness of management as the possibility that a manage-

ment action could fail was not incorporated in the model. The

two studies can be reconciled if we note that it is the factors

that determine the effectiveness and cost of management that

determine the feasibility of eradication, and the contrast

reflects differences in the way the two models are structured.

Specifically, our model includes an explicit description of

management effectiveness (probability of management failure)

separate to management cost. The model presented here

necessarily includes a very simple model of effectiveness that

depends only on the size of the infestation as a crude proxy of

the many biological and logistical factors likely to influence

eradication including spread rate. Our analysis suggests that

improving our understanding of the factors determining the

effectiveness of eradication is critical to making good decisions

and is an area of ongoing research.

The maximum extent had no influence on either the

combined costs and losses or the decision thresholds. In our

A. paradoxa example, the maximum extent has little impact

because the invasion in South Africa would take hundreds to

thousands of years to reach the maximum extent (depending

on the spread rate), by which time discounting has rendered

the contribution to the total cost negligible. This was true even

for the scenario that focussed exclusively on impacts within the

TMNP because in our example, spread rates are sufficiently

slow that the extent of the problem is not restricted by

maximum extent. In this model, it is the discount rate that

effectively sets the maximum impact possible because it sets the

timeframe over which incurred costs are considered. This is

why the discount rate has such a large influence on the total

cost of the invasion. It has much less effect on the decision

threshold as these depend on the relatively likelihoods that the

impacts are incurred (i.e. management fails), which depends

more on the relative effectiveness of the management actions.

What is the value of learning?

The expected value of information analysis allows us to identify

those circumstances when investment in learning is likely to

result in more efficient management and shows that in this case,

learning is most critical when the estimated extent is close to the

eradication–containment decision threshold (taking uncer-

tainty into account). The estimated size of the South African

population of A. paradoxa is close to this threshold, and so the

expected value of information is high in this case, suggesting

that we could obtain the maximum value from learning about

extent size. Even so, the value of information is modest (8%),

indicating that there is somewhat limited value in undertaking

such learning. This contrasts with a study aimed at managing

fire ants in Australia that used an adaptive management analysis

to highlight the importance of learning to maximize eradication

probability (Baxter & Possingham, 2011).

The EVPI analysis presented here gives us an upper bound

on the value that information would have on our ability to

make a better decision because we assume that we can resolve

all of the uncertainty when calculating EVPI. Value of

information analysis is sensitive to the parameters and to the

description of uncertainty (e.g. probability distribution used);

hence, the robustness of the optimal strategy might change if

we substantially alter our parameters or if we applied the

model to other species with markedly different life history

traits or management techniques. It is also worth noting that

the model used here does not incorporate the potential for the

invasion to become worse while the study proceeds (and hence

increased costs of managing the invasion); EVPI probably

overestimates the value of information in this model.

In addition, we have only considered the value of informa-

tion regarding spatial extent. Uncertainty in other parameters

may increase the EVPI (Dakins, 1999). Indeed, there is

substantial uncertainty associated with many of the other

Eradicate or contain acacias?
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parameters, and the sensitivity analysis suggests that uncer-

tainty in some of these (notably the effectiveness of manage-

ment) could be at least as significant as the uncertainty

associated with the estimated size of the infestation. This

additional uncertainty could be considered by extending the

analysis to include uncertainty in all parameters and using

partial value of information to assess the influence that

individual parameter uncertainty has on the management

decision (Claxton, 2008; Runge et al., 2011). Including all

sources of uncertainty in the parameters in the value of

information analysis could provide a more robust analysis and

be a useful next step (Dakins, 1999; Claxton, 2008).

Model assumptions and applicability to other systems

While we were motivated to develop this model to assess the case

for eradication of A. paradoxa in South Africa, the model is

sufficiently general that it could be usefully applied to any

isolated population of plant or animal that spreads in a

reasonably continuous way and for which eradication or

containment is feasible. Although we have assumed that the

invader spreads in all directions equally, in cases where there is

reason to believe that spread would be substantially different

from this (e.g. linear), the model could be adapted to accom-

modate this. Even so, a circular infestation will likely lead to

conservative results with regard to eradication as containment is

most efficient for circular shapes (circles have the largest area–

circumference ratio). Species with high rates of long-distance

dispersal or that have numerous disparate populations linked

through dispersal may be better considered in a spatially explicit

framework that enables one to evaluate not only the viability of

eradication overall but also the order in which eradication of the

individual populations is to be attempted.

The focus of this analysis was on evaluating the economic

case for eradication, and so we have compared two possible

management strategies (eradication and containment) against

a baseline of taking no action. Other management strategies,

such as the initiation of a biological control programme, or

non-targeted control as part of broader management activities,

could also be incorporated into this model framework.

The model developed here is focussed on a single decision

point at an early point in the establishment and spread of an

invading species when data are poor. Hence, we have not sought

to solve the dynamic decision problem to identify how resources

should be allocated each year (Cacho, 2006; Hauser et al., 2006;

Cacho et al., 2007; Moore et al., 2010). Of course, spatial and

temporal variation will be important in determining how the

eradication or containment strategies are implemented or when

to declare eradication. Other decision tools have been developed

to address these problems (Regan et al., 2006; Hauser &

McCarthy, 2009; Rout et al., 2009b; Cacho et al., 2010).

CONCLUSIONS

Our analysis suggests that eradication of the single A. paradoxa

population in South Africa is currently a cost-effective strategy

under realistic scenarios. The model also supports the general

conclusion that as a strategy, eradication is likely to be

economically desirable when management is considered in a

long-term context, if impacts are high, or if an eradication

attempt is likely to succeed. If we have substantial uncertainty

about the current size of the infestation, the cost-effectiveness

of eradication and containment is very similar for small

infestation sizes. Investing effort in resolving the current

infestation size has the potential to save a maximum of 8% of

total expected cost (less the cost of gaining the information).

Our analysis also suggests that management outcomes for

A. paradoxa in South Africa would improve if substantial effort

was invested in increasing the effectiveness and efficiency of

eradication. Given the numerous other similar invasions of this

species and others around the world, such an effort will be

expected to have substantial additional benefits.
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